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Introduction
› Context of the synthesis:

Computational models of molecular networks usually built from:

- the structure of the biological
system (such as known interactions)

- its dynamics
(such as measurements of expressions /

activity at different time / conditions)
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Introduction
› Issue:

The model engineering problem largely under-specified:
⇒ many potential candidate models

Biases in subsequent predictions if an arbitrary single model is retain.
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Introduction
› Our methodology:

Ensemble-based approach to Boolean modelling

Synthesizing and reasoning on dynamics of ensembles of Boolean networks:

› synthesizing Boolean model ensembles
satisfying a set of biologically relevant constraints

› reasoning on the dynamics of the ensembles of models

The main lines of the work we present are:

› a synthesis method

› a simulation method based on ensemble of models

› an illustration on a model of molecular pathways regulating tumour
invasion and migration (Cohen et al. [2015] PLoS Comp. Bio.)
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Definitions

A Boolean network (BN) of dimension n is a function f : {0,1}n→{0,1}n

∀i ∈ [n], fi : {0,1}n→{0,1} denotes the local function of the i th components

Example: f1(x) = ¬x2 ; f2(x) = ¬x1∧ x2

A configuration is a vector x ∈ {0,1}n

BN semantics specify, from a configuration, how to compute the next possible
ones. For synthesis, we consider the Most Permissive Semantics because:

› guarantees to not preclude any behaviour realisable in any
quantitative refinement of the model

› any behaviour it predicts is realisable by a quantitative
refinement of the BN using the asynchronous semantics

› the complexity for deciding main dynamical properties is
considerably lower than with (a)synchronous semantics

"Reconciling qualitative, abstract,

and scalable modeling of biological

networks", Paulevé et al. [2020]
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Synthesis
› Prior work

Synthesis problem formulated as a Boolean satisfiability problem,
implemented in Answer-Set Programming.

Based on our prior work on BNs synthesis from reachability and
attractor properties with Most Permissive semantics

"Synthesis of Boolean Networks from Biological Dynamical Constraints using
Answer-Set Programming." Chevalier S., Froidevaux C., Paulevé L., Zinovyev A.

It leverages:

› a priory knowkedge as constraints on the graph topology

› experimental data as constraints on the dynamical properties

A single logic program contains the whole set of constraints, providing
non-redundant solutions.
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Synthesis
› Extension

Boolean network synthesis extended by:

› enabling universal properties on (reachable) fixed points

› considering different network perturbation settings

› using heuristics to drive the ASP solver in different regions of the
solution space
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Synthesis
› Universal constraint

Method extended with universal property

Universal property: ∃→ ∀
Such a property not only ensures that a described behaviour is in the system
dynamics, it ensures it’s the only possible behaviour.

Example given a list of experimentally observed cell fates:

› existential: at least one attractor matches with each cell fate

› universal: every model attractor matched with at least one of the cell fate

Addressed in ASP thanks to the saturation technique
(presented by Eiter and Gottlob [1995] in Annals of Mathematics and Artificial Intelligence)
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Synthesis
› Universal constraint

Encoded universal properties:

› Universal property on fixpoints

› Universal property on fixpoints reachable from a given configuration

Ensure that all the fixed points of the BN (or those reachable from a
configuration of interest) are compatible with a given set of markers.

Combined with mutations and previous implemented constraints, the method
leverages observations about cell fates in different mutation conditions.
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Synthesis
› Diversity

Mechanism of enumeration by the solver:

› a 1st solution is identified

› followings come from successive slight variations

Consequence:

› partial enumeration→ set of similar solutions
not representative of the diversity of the comprehensive set of models

Our strategy to sample ensembles of diverse BNs:

Tweak heuristics of the solver clingo to stir it towards distant solutions

› at each solution, we randomly select a subset of variables assignments

› we ask the solver to avoid them in the next iterations
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Simulation
› MaBoSS

Markovian Boolean Stochastic Simulator

https://maboss.curie.fr/

› Boolean

› State probability trajectories

› Physical time

› Handle different time scale processes
(transcription, phosphorylation, etc.)

› Efficient (C++, parallel)
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Simulation
› MaBoSS

Continuous time Markov process applied on a Boolean network state space

Transition rate :

p(S→ S′) =

{
Rup(S), ifSi = 0

Rdown(S), ifSi = 1

⇒ In this study, we kept these rate parameters to 1

Model
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Simulation
› MaBoSS

› State probability trajectories

› Steady state distribution
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Simulation
› EnsembleMaBoSS

Model #5

Model #4

Model #3

Model #2

Model #1

› MaBoSS needs few modifications to implement ensemble simulations

› We can select models randomly, or sample uniformely the model-space
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Simulation
› Individual results

Model #5

Model #4

Model #3

Model #2

Model #1

› MaBoSS needs few modifications to implement ensemble simulations

› We can select models randomly, or sample uniformly the model-space

› We can also save the network state probability distribution for each model
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Application
› Cohen’s model

A model of a molecular pathways regulating tumour invasion and migration

Cohen et al. (2015) PLoS Computational Biology
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Application
› Simulation results

WT Notch++, p53–

› Wild Type is mainly apoptotic, with ≈ 25% migration
› Notch++, p53– mutant turns full invasive (known experimental result)
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Application
› Ensemble synthesis

Constraints:

› Cohen’s interaction graph as Prior
Knowledge Network

› Universally reachable fixpoints for a
specific condition

Cohen et al. (2015) PLoS Computational Biology

Two different ensembles :

› Reachability of Cohen’s WT fixpoints

› Reachability of Cohen’s WT + two mutants : Notch++ and p53– (two
invidivual mutants)
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Application
› Simulating our ensemble invasion model

WT Notch++, p53–

› Our WT model is more invasive, with more activation of EMT
› Notch++, p53– mutant is more diverse, including some aberrant
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Application
› Simulating our ensemble invasion model with additional constraints

WT Notch++, p53–

› Our WT model build with global is more invasive
› Less aberrant behaviour
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Application
› Simulating our ensemble invasion model with additional constraints
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Conclusion

› Now we can generate ensembles of models applying universal constraints

› EnsembleMaBoSS can efficiently simulate these ensembles

› Diversity of models can be visualized using dimensionality reduction
methods

› Diversity of models needs to be further evaluated
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Conclusion

Our complete pipeline is available as Jupyter notebooks.

https://doi.org/10.5281/zenodo.3938904

BoNesis, our python library for synthesis of ensembles of boolean models

https://github.com/bioasp/bonesis

pyMaBoSS, our python library for simulation of (ensembles of) boolean
models

https://github.com/colomoto/pyMaBoSS
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